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Hybrid FDTD Simulations of Rib—Waveguides

A. Lauer, A.Bahr and I. Wolff

Abstract—Finite Difference Time Domain simulations of rib—wave-
guides on GaAs substrate are performed using a real-number hybrid
(Yee/discrete~wave—equation) sch in two dim Local grid
refinements are derived using equivalent circuit modifications, Dis-
crete formulas are written using shift-operators, which make them
short and easy to use. Results are compared to those obtained us-
ing the well-known effective-refractive—index (ERI) approximation.
FDTD results show excellent agreement with the approximative for-
mula, which is given in an explicit form. The refinements work well
for low frequencies to determine cutoff-frequencies.

I. INTRODUCTION

The Finite Difference Time Domain (FDTD) method has first been
used to solve Maxwell’s equations in 1966 [1]. In the recent time,
growing performance of computers made it possible to use FDTD
in a large scale for analysis of micro— and millimeter-wave com-
ponents [2].

In this paper, rib-waveguides are analyzed using a two dimen-
sional real-number hybrid Yee algorithm/discrete wave equation
method. A similar kind of algorithm was proposed in [3] for three
dimensional antenna structures.

Section II shows, how the three dimensional Yee-FDTD-scheme
can be separated to generate a two dimensional real-number Yee
algorithm for arbitrary lossless waveguide structures.

To save computation time and computer-memory, homogeneous
regions can be simulated using a special discrete wave—equation
method, which is derived from the Yee algorithm in section III.

To derive local grid refinements, section IV shows an equivalent
circuit for the discrete wave—equation nodes.

In section V an approximative formula for rib—waveguides is de-
rived with the Effective Refractive Index—Method, using a special
Taylor—expansion for writing it in an explicit form.

Section VI shows a comparison of FDTD and ERI results for two
sample rib—guides on GaAs—substrate.
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To the extent of the author’s knowledge, the hybrid simulation
method presented in this publication has not been mentioned be-
fore. It saves computation time and computer memory and gives
interesting perspectives to simple local grid refinements.

II. FDTD RESONATOR SEPARATION

For infinitely long, lossless waveguide structures, exp(jfz) de-
pendence in the direction of propagation is considered, 8 given.
Using this condition to separate a 3D FDTD-scheme leads to a
complex 2D algorithm [4].

In this paper, a cos(8z) dependence of E,, H, and H, and a
sin{fz) dependence of H,, E, and E, is assumed. This can be
interpreted as putting the waveguide in a resonator with perfectly
conducting planes (2 = 0, 8z = w/2, first resonance only) and
leads to a real 2D algorithm.

A wave with exp(jf3z) dependence can be generated by superpos-
ition of the resonator waves e.g. A(cos(8z) + jcos(8z + 90°)),
using the translation-invariance of Maxwell’s equations.

In [5] this topic is considered, too.

The 3D~Yee-FDTD scheme is

A
o= Ht S0-pEee-DE), 0
1 A 1 1
1 1 1 1
€ = Z(1+§+;+y_z)6’ 3

cyclic. For shortness, simpler calculations and easy implementa-
tion, shift operators and integer indices are used.

m All field components denote discrete fields, e.g.

H, = Hz(i;ja k7n)’ i,4,k,n € N,

where n is the time index. Hy(¢,j,k,n) is at the position
(A, (5 +1/2)A, (k+1/2)A,nAy), Eu(i g, k,n) is at (¢ +
1/2)A,jA kA, (n +1/2)A¢) and so on.

M x,y,z and t are shift operators,e.g. tA=A(i + 1,j,k,n); tA=
A(i, 4, k,n+1); %A = A(3, , k,n—1). Shift operators can be mul-
tiplied by or added to other shift operators or numbers, e.g. zy A =
AG+1,54+1,k,n), zl—yA=A(i —1,j-1Lkmn)or(5+6x)A=
5A(%, j, k,n) + 6A(1 + 1,4, k,n).

M Cyclic means from each formula two additional formulas can be
generated by substituting (z = y,y = zand z - ) or (z - 2,
y — x and z — y). Shift operators as well as component indices
have to be substituted.
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M ; is assumed to be constant, A; is the time step and A the step
in space, assumed to be constant.

Assuming E, = E,(i, j,n) cos(8(k + 1/2)A) (same for H, and
H,)and H, = H,(i, j,n) sin(BkA) (same for E, and E,), a two
dimensional FDTD-scheme for arbitrary lossless waveguides is
generated :

‘H, = Ho+ uA_At [(1 ~y)E, + 28, sin(%ﬂA)} ;@
i, = Ayt 2 [ ym - mnen)]
M, = H+St0-9B+@-DEL  ©
B = 3+ 20 bacomengen)] o
B, = %E,, + ;% {(% - 1)H, - 2H, sin(%ﬂA)] » ®
E, = %E + 3—; [(1 - %)Hy + (% - 1)Hz} O

with ¢, etc. obtained by substituting 21— by 1 in the two cyclic for-
mulas of (3), since € is constant in z-direction.

Excitation is done by setting one field-component at a single point
(called F,.(P)) to one, all others to zero as initial condition. Thus
all modes with F,(P) 5 0 at 3 are excited. Observation of F.(P)
in dependence on time and usage of the Fast-Fourier-Transform
leads to sharp peaks, which denote the appropriate frequencies at
B for all modes excited.

Since the usual Absorbing Boundary Conditions cannot handle the
exponentially decreasing fields to be expected outside the wave-
guide, magnetic walls have been used as boundaries for the 2D cal-
culations.

III. THE DISCRETE WAVE EQUATION

In a homogeneous region, € is constant, this means €, = ¢,
¢, = €. Now (4,8) and (5,7) yield

(Tt —1)+ A8HH, = mT(1-y)E, + scﬁ(—zl- —1)H, (10)

(Tt - 1) + @S H, = mT(z — VB, — SA(1 - Z%)H, an

with ¢2 = —éf—g m= —A& T=(1-1)and S = 2sin(144)

neA?’ na’ H 2PE
Substituting (10,11) in (9) multiplied by (T'(¢ — 1) + ¢2S?) and
then divided by T gives

tE,

1 1 1

= [2->+F@+-+y+-—-4-8)|E, 12)

t T Y
a discrete wave equation. The same equation can be obtained for
H,.
Discontinuities are treated with the normal YEE-FDTD-scheme,
4-9).
Usage of the hybrid scheme saves approx. 33 % of computer
memory and approx. 25 % of computation time.

IV. DERIVATION OF LOCAL GRID REFINEMENTS

Stable local grid refinements for FDTD usage are not easy to find.
Figure 1 shows the equivalent circuit for (12). Circuit analysis

Fig. 1. Equivalent circuit for one node.

yields the time—continuous equivalent to (12),

&2 1 1 1 1
pr m(z+;+y+§—4)A—fC—A

» (13)

where z,y,1/x,1/y are shift operators and A denotes the electric
potential of the node. L,L; and C have to be chosen appropriately,
we chose Ly = 1, C = A}/c?, L = 1/82. For low frequencies,

G

Fig. 2. Modified Equivalent circuit for one node.

the Y-Matrix of figure 1 converges against that of figure 2, with

1
L2 = 1+ZS2 )
4
Ly = ?-{'1 ,
1 A}

Now the node can be completely eliminated, re-arranging the cent-
ral coils as in figure 3, with Ly = 4 + §2. No approximation is
needed here fore. Thus a method to “erase” nodes is designed, e.g.
allowing to erase half of the nodes in a homogeneous region as in
figure 4.

Standard nodes can be erased in arbitrarily shaped homogeneous
regions. To erase already modified nodes, the above procedure can
be used, too.
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The modified grid is stable for 8 = 0, because passive lumped Squaring (15) and using the identity tan®(a) = 1/ cos?(a) — 1
element circuits are simulated only. For 8 # 0, instabilities were leads to

observed, but for small values of 3, the results are still usable. b 1
cosz(\/ €r — 6r,eﬂ'A_O) = o1 (er - fr,eﬂ'): (16)
T

b 1 )\0 wb
COS(V €r Cr,eﬂ‘)"o") & —17b V€ — fr,eff,\_oy an
b
T = & — Er,eff}()'a (]8)

_ T X
ko= ,/er_“b, 19)

cos(z) = kz. (20)

Using a second order Taylor expansion for cos(z), (20) can ap-
proximately be solved as

z ~ —k+vVEE+2 @n

To obtain more exact approximations, this can also be done iterat-
ively, using the approximate x as expansion point for the next ap-
proximation. If two iterations are done, the formula gained is still
explicit and usable, being exact enough for all practical cases.
This way, €, is calculated for the regions I and II. To obtain the
waveguide’s effective permittivity,

wa Ereff,wg ™ Ereff,
ta-n(\/ Ereff I — 5r,eﬂ',wg}“) = DENNE AT (22)
0 Ereff 11 — Ereff,wg

is solved the same way [6]:

2
] ) P¥ [ n?b
Fig. 4, Re-"fined” grid. € = €— *——_W‘lb? (:_ D [ 2~-—-——-)‘g (e-1)+1-1

Erasing half of the nodes in a region reduces computer memory

4 22
requirement by 50 percent. Computation time is also reduced. ¢, err — __ﬁ)‘(’_____ 2”_2‘_(6 n—e)+1-1
wta*(err —€r) A

NN NN
0008088

2

1

V. THE ERI-FORMULA where the indices ”r” and eff”” are left out for shortness, and ¢ can

Figure 5 shows the considered symmetric rib—waveguide on GaAs beTorII.

(e =12.9).
VI. RESULTS

Figure 6 shows FDTD and ERI-results for a = 300 um, b, = 110
pm and by = 150 pm. A is 5 pm, Ay = 7.5 fs. 65536 time—steps
were used for the simulation, the simulation areais 1.5 mm x 1.5

mm (see fig. 5).
Figure 7 shows FDTD and ERl-results for a = 250 pm,
Fig. 5. Symmetric Rib-waveguide. by =125 pm and by = 180 pm. A is 5 pm, A = 7.5 fs. 65536

time-steps were used for simulation, the simulation area is 1
First eq for the TEo-film—mode (E,,H, and H, only) is calcu- mm x l.mm. The FDTD-simulated waveguide is asymmetric, its
lated for region (IIIT) and I separately. Therefore usually bottom is flat.

FDTD and ERI results do agree extremely well, for both, symmet-

— @b €reff — 1 ric and asymmetric rib-waveguides.
tan(v/er = Er’eﬁj\;) - €r — Epeff (35) The figures 8-10 show the recorded electric field of the symmet-
ric waveguide after a Fast—Fourier-Transform has been applied to
is solved numerically for €, ¢ (region I) [6]. obtain the eigen—frequencies as peaks.
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Fig. 6. FDTD and ERI~results (A).
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Fig. 7. FDTD and ERI-results (B).

Grid 1 is the standard Yee—grid, Grid 2 a hybrid Yee/discrete—
wave—cquation assembly with as many as possible nodes deleted
as explained in section IV.

It can be seen, that the local grid refinements do not influence the
calculated eigen—frequencies of the first few modes.

The Grid 1 simulations took approximately 2:11 hours on a MIPS—
R4400 processor (200 MHz), for Grid 2 is was 1:05 hours.
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Fig. 8. Spectrum for 8 = 10000/m.

VII. CONCLUSIONS

The 3D Yee-FDTD scheme has been separated for a waveguide
put into a resonator, so a 2D algorithm has been obtained. The res-
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Fig. 9. Spectrum for 8 = 0 (TE)
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Fig 10. Spectrum for 8 = 0 (TM).

ults are usable for travelling wave structures, too. The 2D Yee—
algorithm was then simplified in homogeneous regions, leading to
a discrete wave—equation. This way, computer memory and com-
putation time can be saved.

An explicit approximate formula was derived for rib—waveguides,
its results agree very well with those of the hybrid FDTD-
simulations.

Local grid refinements can be easily done in the wave-equation
regions, using a special node erasing procedure. The refinements
save up to 50 percent of computer memory and are accurate for low
frequencies.
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